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1. Introduction 
 
A dendrimer is a synthetic 3-dimensional 

macromolecule that is prepared in a step-wise fashion 
from simple branched monomer units. The nanostar 
dendrimer is part of a new group of macromolecules with 
great applications but first its mathematical properties 
must be understood. Here, a nanostar dendrimer is a 
connected plane graph, in which each interior face is a 
regular hexagon and there are no common vertices or 
edges between hexagons. The topological study of these 
macromolecules is the aim of this article, see [1-6] for 
details. 

Let G = (V,E) be a molecular graph with n vertices 
and m edges. Such a graph will be referred to as an (n, m)-
graph. A perfect matching of G is a set of independent 
edges of G covering all vertices of G. By IUPAC 
terminology, a representation of an aromatic molecular 
entity with fixed alternating single and double bonds, in 
which interactions between multiple bonds are assumed to 
be absent, called a Kekule structure. The number of 
Kekule structures of a graph G is denoted by K(G) [7]. In 
mathematics, a Kekule structure for a graph G usually 
named a perfect matching of G [8]. Kekule structures have 
numerous applications in chemistry [9-14]. For instance, 
various Kekule-structure-related models for approximating 
the Dewar resonance energy (DRE) of benzenoid 
hydrocarbons have been proposed, see [7,15] for details. 

A bipartite graph is a graph whose vertex set V can be 
partitioned into two disjoint subsets V1 and V2 such that 
any edge e = uv ∈ E(G) joins V1 with V2. It is well-known 
that a graph is bipartite if and only if all of its cycles have 
even length. A spanning subgraph of H of a graph G is 
called a Clar cover if each of its components is either a 
hexagon or K2. A hexagon belonging to a Clar cover is 
often indicated by drawing a circle inside this hexagon. 
For example in Figure 1, four Clar covers containing two 
alternating hexagons are shown. A Clar cover of H is 

called a Clar structure if the set of hexagons is maximal (in 
the sense of set-inclusion) within all Clar covers of H. The 
number of Clar structures and Clar covers without 
alternating hexagons are denoted by cs(H) and cc(H), 
respectively.  

The Clar polynomial of a hexagonal system H can be 
defined as ρ(x,H) = Σi≥0ρ(i,H)xi, where ρ(i,H) is the 
number of Clar structures containing i cycles. If H is a 
dendrimer nanostar then we apply the same definition as 
hexagonal systems to define the Clar polynomial of H. An 
alternating hexagon for a Clar cover C is a hexagon such 
that its edges are alternatively contained in C and G – C.  

In this paper we are interested in dendrimer nanostar 
graphs that possess perfect matchings. Throughout this 
paper we only consider connected graphs. Our notation is 
standard and mainly taken from [16].  

 

 
 

Fig. 1. A Hexagonal system H and four Clar covers, one 
containing the two alternating hexagons. 

 
 
2. Main results and discussion  
 
The aim of this section is to compute the sextet 

rotation, Clar structures, Clar covers and Kekule index of 
four dendrimer nanostars NS1[n], NS2[n], NS3[n] and 
NS4[n], Figs. 2-5, where n is the number of layers of the 
nanostar dendrimer graph under consideration. We notice 
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that if cs(H) = cc(H) then it is possible to compute easily 
the Clar polynomial of H, since it can be solved by 
contracting all Clar covers without alternating hexagons.  

Following Zhou, Zhang and Gutman [14], the peaks 
and valleys of G are coloured black and white, 
respectively, and all cycles considered are assumed to be 
oriented clockwise. Suppose M is a perfect matching for 
G. A cycle C of G is called M-alternating cycle if its edges 
belong alternately in M and G − M. An M−alternating 
cycle C of H is said to be proper if each edge of C 
belonging to M goes from a white vertex to a black vertex, 
and improper otherwise.  

It is clear that a perfect matching M for a graph H is a 
Clar cover of H, because any perfect matching of H is a 
spanning subgraph that its all of components are K2. Every 
hexagon in these dendrimer nanostars is an alternating 
hexagon. Thus M is a Clar cover with alternating hexagon. 
If in the perfect matching M, select all of edges in a 
hexagon instead of 3 alternating edges K2 in a hexagon, 
we make a Clar cover without alternating hexagons. For a 
graph H, the number of Clar covers of H is denoted by 
C0(H). 

Lemma 1. The number of vertices and edges of 
NSi[n], 1 ≤ i ≤ 4, is: 

a) |V(NS1[n])| = 42.24 −n  and |E(NS1[n])| = 
52.27 −n , 

b) |V(NS2[n])| = 42.16 1 −+n  and  |E(NS2[n])| = 
52.18 1 −+n , 

c) |V(NS3[n])| = 122.52 −n  and  |E(NS3[n])| = 
132.58 −n , 

d) |V(NS4[n])| = 602.96 1 −−n  and  |E(NS4[n])| = 
662.105 1 −−n . 

 
Theorem 1. The following statements are hold: 
 
a) C0(NS1[n]) =, 
b) C0(NS2[n]) =, 
c) C0(NS3[n]) = 

n216 , 

d) C0(NS4[n]) = ,3 )42(313 −+ n

 n≥2. 
 
Proof. The parts (a), (b) and (c) are easy 

consequences of the Figs. 2-4. Every hexagon of a Clar 
cover has three different forms. To prove the part (d), we 
must calculate the number of hexagons. In fact, C0(NS4[n]) 
= ])[( 43 nNSh , where n ≥ 2. From the Fig. 9, one can see 
that ∑ −

=+= 1
1 2.313 n

i
ih , proving the theorem. 

Notice that the growth of the nanostar dendrimer 
NS3[n] depicted in Figs. 3 and 8, is different from other 
nanostar dendrimers presented in this paper. 

 
 

Fig. 2. The molecular graph of NS1[n] for n=3. 
 

 
 

Fig. 3. The molecular graph of NS2[n] for n=2. 
 

 
 

 
Fig. 4. The molecular graph of NS3[n] for n=2. 

 

 
 

Fig. 5. The molecular graph of NS4[n] for n=3. 
 

Lemma 2. Suppose h(H) denotes the number of 
hexagons in a nanostar dendrimer H. Then the following 
are hold: 

a) h(NS1[n]) = 3.2n, 
b) h(NS2[n]) = 2n+2, 
c) h(NS3[n]) = 2n+2, 
d) h(NS4[n]) = 13+3(2n - 4), n≥2. 
 
Proof. The proof is straightforward and follows from 

the molecular graphs of NSi[n], 1 ≤ i ≤ 4. 
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Fig. 6. The Core of NS1[n]. 
 

Theorem 2. For dendrimer nanostars NS1[n], NS2[n] 
and NS4[n], cc = cs = 1 and for dendrimer nanostar 

NS3[n], cc = cs = 
n24 . 

Proof. Consider a given Clar cover C of dendrimer 
nanostars NS1[n], NS2[n] or NS4[n]. If there is a hexagon h 
outside C, we add h to C as a hexagon component in Clar 
cover C to obtain another Clar cover strictly containing C. 
This process can be continued to obtain the unique Clar 
structure of NSi[n], i = 1, 2, 4. This shows that in 
dendrimer nanostars NS1[n], NS2[n] and NS4[n], cc = cs = 
1. 

We now consider the dendrimer shape molecule 
NS3[n]. From Fig. 8, the core of this molecule has exactly 
four similar branches, each of which can be given four 
different forms for Clar cover, Fig. 10. Hence by a simple 

counting method, cc = cs = 
n24 . This completes the proof. 

 

 
 

Fig. 7. The Core of NS2[n]. 
 

We now compute the Clar polynomial of four types of 
dendrimer nanostars nanostars NS1[n], NS2[n], NS3[n] and 
NS4[n]. Since, the Clar structure of the dendrimer 
nanostars NS1[n], NS2[n] and NS4[n] are unique, the Clar 
polynomial is a monomial. The number of cycles in a Clar 
structure is equivalent to the number of hexagon 
components in a Clar structure. Hence for dendrimer 
nanostars NSi[n], i = 1, 2, 4, the Clar polynomial is 
ρ(x,NS1[n]) = xh(NS

i
[n]) , since cc = cs = 1. 

 

 
 

Fig. 8. The Core of NS3[n]. 
 

 
 

Fig. 9. The Core of NS4[n]. 
 

 
 

Fig. 10. Four different forms of branches of the molecule 
in calculation of Clar covers. 

 
Theorem 3. The following statements are hold: 

a) ρ(x , NS1[n]) = 
n

x 2.3 , 

b) ρ(x , NS2[n]) = 
22 +n

x , 
c) ρ(x , NS3[n]) = ++ xn 12  123

1
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1
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2
2
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++⎟⎟
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xxx
nn , 

d) ρ(x,NS4[n]) = )42(313 −+ n
x . 

 
Proof. The parts (a), (b) and (d) are obtained from our 

discussion before stating the theorem. To prove (c), we 
notice that each branch of NS3[n] has exactly one hexagon 
and the molecule is containing 2n+1 branches, proving the 
result.  

 
Let G be a non-acyclic graph. The number of 

components and perfect matchings of G are denoted by 
c(G) and m(G), respectively. The perfect matching index 

of G is defined as π(G) = 
)(

)(log2

Gz
Gm

, where z(G) = 

|E(G)| − |V(G)| + c(G) is called the cyclic number of G. In 
the case of molecular graph, π(G) is called the Kekule 
index of G and it is denoted by κ(G). In particular, when G 
is a hexagonal system, z(G) is the number of hexagons and 
therefore, the Kekule index is also considered by some 
chemists as a measure of resonance energy per hexagon. It 
is well known that 1)( ≤Gκ  [16]. 

 
Lemma 3. The number of Kekule structures of four 

dendrimer nanostars NS1[n], NS2[n], NS3[n] and NS4[n] 
are as follows: 

a) K(NS1[n]) = 
1264
−n

, 

b) K(NS2[n]) = 
222

+n
, 

c) K(NS3[n]) = 
n29 , 

d) K(NS4[n]) = 2,2 )42(313 ≥−+ n
n

. 
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We are now ready to state our final main results 

related to the Kekule index of these nanostars: 
 
Theorem 4. The Kekule index of dendrimer nanostars 

NS1[n], NS2[n], NS3[n] and NS4[n] are computed as 
follows: 

a) κ(NS1[n]) = )22.3(2.6 11 −+− nn , 

b) κ(NS2[n]) = )2.72(2 12 ++ − nn , 
c) κ(NS3[n]) = )192.10(log.2 13

2
1 −++ nn , 

d) κ(NS4[n]) = 2,)22.6()42(313 1 ≥+−+ + nnn . 
 
Proof. The proof follows from definition and Lemmas 

1 and 3. 
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